1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
pub use euclid::Rect;

use crate::{
    custom_measurer::LayoutMeasurer,
    dom_adapter::{DOMAdapter, NodeAreas, NodeKey},
    geometry::{Area, Size2D},
    measure_mode::MeasureMode,
    node::Node,
    prelude::{AlignmentDirection, AreaModel, LayoutMetadata, Torin},
    size::Size,
};

/// Measure a Node layout
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_node<Key: NodeKey>(
    node_id: Key,
    node: &Node,
    layout: &mut Torin<Key>,
    // Area occupied by it's parent
    parent_area: &Area,
    // Area that is available to use by the children of the parent
    available_parent_area: &Area,
    measurer: &mut Option<impl LayoutMeasurer<Key>>,
    // Whether to cache the measurements of this Node's children
    must_cache_inner_nodes: bool,
    // Adapter for the provided DOM
    dom_adapter: &mut impl DOMAdapter<Key>,

    layout_metadata: &LayoutMetadata,

    invalidated_tree: bool,
) -> (bool, NodeAreas) {
    let must_revalidate = invalidated_tree
        || layout.dirty.contains(&node_id)
        || !layout.results.contains_key(&node_id);
    if must_revalidate {
        // 1. Create the initial Node area size
        let mut area_size = Size2D::new(node.padding.horizontal(), node.padding.vertical());

        // 2. Compute the width and height given the size, the minimum size, the maximum size and margins
        area_size.width = node.width.min_max(
            area_size.width,
            parent_area.size.width,
            available_parent_area.size.width,
            node.margin.left(),
            node.margin.horizontal(),
            &node.minimum_width,
            &node.maximum_width,
            layout_metadata.root_area.width(),
        );
        area_size.height = node.height.min_max(
            area_size.height,
            parent_area.size.height,
            available_parent_area.size.height,
            node.margin.top(),
            node.margin.vertical(),
            &node.minimum_height,
            &node.maximum_height,
            layout_metadata.root_area.height(),
        );

        // 3. If available, run a custom layout measure function
        // This is useful when you use third-party libraries (e.g. rust-skia, cosmic-text) to measure text layouts
        // When a Node is measured by a custom measurer function the inner children will be skipped
        let measure_inner_children = if let Some(measurer) = measurer {
            let custom_size = measurer.measure(node_id, node, parent_area, available_parent_area);

            // 3.1. Compute the width and height again using the new custom area sizes
            if let Some(custom_size) = custom_size {
                if Size::Inner == node.width {
                    area_size.width = node.width.min_max(
                        custom_size.width,
                        parent_area.size.width,
                        available_parent_area.size.width,
                        node.margin.left(),
                        node.margin.horizontal(),
                        &node.minimum_width,
                        &node.maximum_width,
                        layout_metadata.root_area.width(),
                    );
                }
                if Size::Inner == node.height {
                    area_size.height = node.height.min_max(
                        custom_size.height,
                        parent_area.size.height,
                        available_parent_area.size.height,
                        node.margin.top(),
                        node.margin.vertical(),
                        &node.minimum_height,
                        &node.maximum_height,
                        layout_metadata.root_area.height(),
                    );
                }
            }

            // Do not measure inner children
            custom_size.is_none()
        } else {
            true
        };

        // 4. Compute the inner size of the Node, which is basically the size inside the margins and paddings
        let inner_size = {
            let mut inner_size = area_size;

            // 4.1. When having an unsized bound we set it to whatever is still available in the parent's area
            if Size::Inner == node.width {
                inner_size.width = node.width.min_max(
                    available_parent_area.width(),
                    parent_area.size.width,
                    available_parent_area.width(),
                    node.margin.left(),
                    node.margin.horizontal(),
                    &node.minimum_width,
                    &node.maximum_width,
                    layout_metadata.root_area.width(),
                );
            }
            if Size::Inner == node.height {
                inner_size.height = node.height.min_max(
                    available_parent_area.height(),
                    parent_area.size.height,
                    available_parent_area.height(),
                    node.margin.top(),
                    node.margin.vertical(),
                    &node.minimum_height,
                    &node.maximum_height,
                    layout_metadata.root_area.height(),
                );
            }
            inner_size
        };

        // 5. Create the areas
        let area_origin = node
            .position
            .get_origin(available_parent_area, parent_area, &area_size);
        let mut area = Rect::new(area_origin, area_size);
        let mut inner_area = Rect::new(area_origin, inner_size)
            .after_gaps(&node.padding)
            .after_gaps(&node.margin);

        let mut inner_sizes = Size2D::default();

        if measure_inner_children {
            // 6. Create an area containing the available space inside the inner area
            let mut available_area = inner_area;

            // 6.1. Adjust the available area with the node offsets (mainly used by scrollviews)
            available_area.move_with_offsets(&node.offset_x, &node.offset_y);

            let mut measurement_mode = MeasureMode::ParentIsNotCached {
                area: &mut area,
                inner_area: &mut inner_area,
            };

            // 7. Measure the layout of this Node's children
            measure_inner_nodes(
                &node_id,
                node,
                layout,
                &mut available_area,
                &mut inner_sizes,
                measurer,
                must_cache_inner_nodes,
                &mut measurement_mode,
                dom_adapter,
                layout_metadata,
                true,
            );
        }

        (
            must_cache_inner_nodes,
            NodeAreas {
                area,
                margin: node.margin,
                inner_area,
                inner_sizes,
            },
        )
    } else {
        let areas = layout.get(node_id).unwrap().clone();

        let mut inner_sizes = areas.inner_sizes;
        let mut available_area = areas.inner_area;

        available_area.move_with_offsets(&node.offset_x, &node.offset_y);

        let mut measurement_mode = MeasureMode::ParentIsCached {
            inner_area: &areas.inner_area,
        };

        measure_inner_nodes(
            &node_id,
            node,
            layout,
            &mut available_area,
            &mut inner_sizes,
            measurer,
            must_cache_inner_nodes,
            &mut measurement_mode,
            dom_adapter,
            layout_metadata,
            false,
        );

        (false, areas)
    }
}

/// Measure the children layouts of a Node
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_inner_nodes<Key: NodeKey>(
    parent_node_id: &Key,
    parent_node: &Node,
    layout: &mut Torin<Key>,
    // Area available inside the Node
    available_area: &mut Area,
    // Accumulated sizes in both axis in the Node
    inner_sizes: &mut Size2D,
    measurer: &mut Option<impl LayoutMeasurer<Key>>,
    // Whether to cache the measurements of this Node's children
    must_cache_inner_nodes: bool,
    mode: &mut MeasureMode,
    // Adapter for the provided DOM
    dom_adapter: &mut impl DOMAdapter<Key>,

    layout_metadata: &LayoutMetadata,

    invalidated_tree: bool,
) {
    let mut measure_children = |mode: &mut MeasureMode,
                                available_area: &mut Area,
                                inner_sizes: &mut Size2D,
                                must_cache_inner_nodes: bool| {
        let children = dom_adapter.children_of(parent_node_id);

        for child_id in children {
            let inner_area = *mode.inner_area();

            let child_data = dom_adapter.get_node(&child_id).unwrap();

            let mut adapted_available_area = *available_area;

            if parent_node.cross_alignment.is_not_start() {
                // 1. First measure: Cross axis is not aligned
                let (_, child_areas) = measure_node(
                    child_id,
                    &child_data,
                    layout,
                    &inner_area,
                    available_area,
                    measurer,
                    false,
                    dom_adapter,
                    layout_metadata,
                    invalidated_tree,
                );

                // 2. Align the Cross axis
                adapted_available_area.align_content(
                    available_area,
                    &child_areas.area.size,
                    &parent_node.cross_alignment,
                    &parent_node.direction,
                    AlignmentDirection::Cross,
                );
            }

            // 3. Second measure
            let (child_revalidated, child_areas) = measure_node(
                child_id,
                &child_data,
                layout,
                &inner_area,
                &adapted_available_area,
                measurer,
                must_cache_inner_nodes,
                dom_adapter,
                layout_metadata,
                invalidated_tree,
            );

            // Stack the child into its parent
            mode.stack_into_node(
                parent_node,
                available_area,
                &child_areas.area,
                inner_sizes,
                &child_data,
            );

            // Cache the child layout if it was mutated and inner nodes must be cache
            if child_revalidated && must_cache_inner_nodes {
                layout.cache_node(child_id, child_areas);
            }
        }
    };

    {
        // This is no the final measure, hence we make a temporary measurement mode
        // so the affected values are not reused by the final measurement
        let mut alignment_mode = mode.to_owned();
        let mut alignment_mode = alignment_mode.to_mut();
        let mut inner_sizes = *inner_sizes;

        if parent_node.main_alignment.is_not_start() || parent_node.cross_alignment.is_not_start() {
            // 1. First measure: Main axis is not aligned
            measure_children(
                &mut alignment_mode,
                &mut available_area.clone(),
                &mut inner_sizes,
                false,
            );
        }

        if parent_node.cross_alignment.is_not_start() {
            // 2. Adjust the available and inner areas of the Cross axis
            alignment_mode.fit_bounds_when_unspecified_and_aligned(
                parent_node,
                AlignmentDirection::Cross,
                available_area,
            );
        }

        if parent_node.main_alignment.is_not_start() {
            // 3. Adjust the available and inner areas of the Main axis
            alignment_mode.fit_bounds_when_unspecified_and_aligned(
                parent_node,
                AlignmentDirection::Main,
                available_area,
            );

            // 4. Align the Main axis
            available_area.align_content(
                alignment_mode.inner_area(),
                &inner_sizes,
                &parent_node.main_alignment,
                &parent_node.direction,
                AlignmentDirection::Main,
            );
        }
    }

    // 5. Second measure
    measure_children(mode, available_area, inner_sizes, must_cache_inner_nodes);
}